
A Unified Lab Notes Framework for
Experimental Reproducibility in HPC Systems

R. Marshall and P. Bangalore

Motivation

• HPC systems are increasingly diverse, with various
• hardware configurations
• firmware versions
• operating systems
• installed software versions
• communication media …

• By the time the results from an experiment can be
published, some or all of the components of the
environment could have changed.

Motivation (cont.)

• While a number of tools exist to aid in reproducibility, there
is still a gap in experimental integrity that the researcher is
often left to close manually:
• input files and runtime parameters
• output content and format
• method of connecting dependencies with configuration

management and program output

Trackable components

COMPILERS AND DEPENDENCIES

PROGRAM CODE

CLI: PARAMETERS AND OUTPUT

INPUT FILES AND METADATA

System A

By breaking down an
experiment into trackable
components, we can ensure all
aspects of a published
experiment can be reproduced.

Components below this line are
beyond scope to manage
directly, though collection of
metadata to record is OK.

HARDWARE

FIRMWARE

DRIVERSOPERATING SYSTEM

LOW LEVEL METADATA

Experimental Integrity: Compilers
and Dependencies

Output of ‘spack find’

• For full reproducibility of an experimental application that uses binary
executables, the compiler and linked libraries should also be reproduced.

• Systems like Spack are useful for tracking and managing dependencies.

Experimental Integrity: User
Input/Output

• The following should be tracked
and stored:
• user configuration files
• program input files/metadata
• command line parameters
• program output

• Storing in a common format helps
ensure experimental integrity

• Tools/systems of interest:
• MLFlow
• ReFrame

Output from CLAMR runs in MLFlow

A Unified Lab Notes Framework

Unified Lab
Notes

Framework

spack …
ReFrame

e4s
MLFlow

Create Track
Run

3. Generate Experiment A′ with framework
(based on Experiment A)

4. Deploy, test Experiment A′ on System B

Test Deploy
Run

1. Create Experiment A with
framework

2. Run Experiment A on System A

5. Run Experiment A′ on System B

HARDWARE

FIRMWARE

DRIVERS

COMPILERS AND DEPENDENCIES

PROGRAM CODE

CLI: PARAMETERS AND OUTPUT
INPUT FILES AND METADATA

System B, Experiment A′

OS

LOW LEVEL METADATA

HARDWARE

FIRMWARE

DRIVERS

COMPILERS AND DEPENDENCIES

PROGRAM CODE

CLI: PARAMETERS AND OUTPUT
INPUT FILES AND METADATA

System A, Experiment A

OS

LOW LEVEL METADATA

A Unified Lab Notes Framework

Unified Lab
Notes

Framework

spack …
ReFrame

e4s
MLFlow

Create Track
Run

COMPILERS AND DEPENDENCIES

PROGRAM CODE

CLI: PARAMETERS AND OUTPUT

INPUT FILES AND METADATA

System A, Experiment A

HARDWARE

FIRMWARE

DRIVERS

COMPILERS AND DEPENDENCIES

PROGRAM CODE

CLI: PARAMETERS AND OUTPUT
INPUT FILES AND METADATA

System B, Experiment A′

OS

3. Generate Experiment A′ with framework
(based on Experiment A)

4. Deploy, test Experiment A′ on System B

Test Deploy
Run

1. Create Experiment A with
framework

2. Run Experiment A on System A

5. Run Experiment A′ on System B

LOW LEVEL METADATA

LOW LEVEL METADATA

Contributions
• Productivity:

• new team members can easily get up to speed on existing experiments
• simpler and more accurate handoff

• Reproducibility:
• development of standards
• as a regression test

• Ongoing work:
• software product/toolkit for release
• technical documentation (reproducibility standards)
• conference publication (1 or more)

Thanks for attending

• Open for questions

	A Unified Lab Notes Framework for Experimental Reproducibility in HPC Systems
	Motivation
	Motivation (cont.)
	Trackable components
	Experimental Integrity: Compilers and Dependencies
	Experimental Integrity: User Input/Output
	A Unified Lab Notes Framework
	A Unified Lab Notes Framework
	Contributions
	Thanks for attending

