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Motivation

• HPC systems are increasingly diverse, with various
• hardware configurations
• firmware versions
• operating systems
• installed software versions
• communication media …

• By the time the results from an experiment can be 
published, some or all of the components of the 
environment could have changed.



Motivation (cont.)

• While a number of tools exist to aid in reproducibility, there 
is still a gap in experimental integrity that the researcher is 
often left to close manually:
• input files and runtime parameters
• output content and format
• method of connecting dependencies with configuration 

management and program output



Trackable components 
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By breaking down an 
experiment into trackable 
components, we can ensure all 
aspects of a published 
experiment can be reproduced.

Components below this line are 
beyond scope to manage 
directly, though collection of 
metadata to record is OK.
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Experimental Integrity: Compilers 
and Dependencies

Output of ‘spack find’

• For full reproducibility of an experimental application that uses binary 
executables, the compiler and linked libraries should also be reproduced.

• Systems like Spack are useful for tracking and managing dependencies.



Experimental Integrity: User 
Input/Output

• The following should be tracked 
and stored:
• user configuration files
• program input files/metadata
• command line parameters
• program output

• Storing in a common format helps 
ensure experimental integrity 

• Tools/systems of interest:
• MLFlow
• ReFrame

Output from CLAMR runs in MLFlow



A Unified Lab Notes Framework
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Contributions
• Productivity: 

• new team members can easily get up to speed on existing experiments
• simpler and more accurate handoff

• Reproducibility:
• development of standards
• as a regression test

• Ongoing work:
• software product/toolkit for release
• technical documentation (reproducibility standards)
• conference publication (1 or more)



Thanks for attending

• Open for questions
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